PH: | essons Learned

Jan-Willem Maessen

Sun Microsgstems | aboratories

Arvind
MITGCSAIR

~ DPMCA. Charleson. SC. 15 Jan 2006

The PH Laﬂguage

+ Id execution model + Haskell sgntax and types

* lmplicitlg Para”eL non-strict, eager evaluation

flop :: Int -> [Int] -> [Int]
flop n xs = rs IMPLICIT PARALLEL
where (rs,ys) = for 1 <- [1..n] do
X:hext Xs = XS PROGRAMMING

next ys = x:ys

finally (ys, xs)

° E’:\/ery subexpression may

IN pH

run In Para”el

° HeaP may hold Partia”9~

computecl clata

SR

» Historical Perspective
» Roots in Id and dataflow execution model
o Id becomes ch90) a modern FP language
o Threads and von Neumann execution
& Transition to pH and Eager Haskell

* | essons
* Unexpected hurdles

o Multi-core architectures

SRR

* Textual |anguage clescribing dataflow graphs
(1977-78, Arvind@UC Irvine)

2 Dgnamica”g tgpecl (Influences LisP) E
» lclsgs: Id compiler at MIT (1979 — 82; Pingali) Kathail)
» Id World: dataflow gral:)h, executed on a graplﬁ
interpreter GITA (1982-88)
XS Evergthing ran in Para”el, Para”elism Proﬁles
+ Worked out dataflow function call

+ Invention of I- and M-structures to avoid colaying

arrays cluring construction

RS (Tréub) Marais, Cu”e@ N!khll, ngah) |

- and M-~structures

Storage -+ sunclnronization In one.

* |-structure: write once.
» Read: block until write occurs
* M-structure: write many synchronization
o Take: block until a value is written, then
remove it and mark the location empty
* Cal:)ture non-determinism in system code

« Build classic mark-based gral:)h algorithms

Id Noveau / Id 90

» Id becomes a modern Functional Language:
* Hindleg—-l\/\ilner types
* Array and list comPrehensions
& |-structures are Ac}-emphasized IN source
+ Detter resource management
* Compiler~inserteczl free oPerations
* 2X larger compiler code base (Nikhil, Hicks)

o Fora compiler which alreaclg worked well

Shigting focus to runtime

* By the mid 80%s, ‘<<—:9 issues had been resolved

D 4 Tl"ICI"C wWas morire than enough Para”e ISM

* |d comPiler was starting to see heav& use (LANL)
| * For systems Programming tasks, too!
- Bounded Ioops

o Limit actual Para”elism, space Consump‘tion
. Classical oPtimizations on dataflow graphs

* Basicang an SSA comPiler

- Suspensive threacﬂing...

%

d/pH Thread Mode

XS Non~5uspensive Thread ~ basic block

Tree of Global Heap of
Activation Shared Objects
Frames 3 3

R R -

f;:i;leg% ~ =
s 3

% 33 asynchronous
loop and parallel

at all levels

Great on Monsoon

Boon Ang, Derek Chiou, Jamey Hicks

speed up critical path
(millions of cycles)
lpe 2pe 4pe 8pe lpe 2pe 4pe 8pe
Matrix Multiply 1.00 1.99 3.90 7.74 1057 531, 2071 52157
500 x 500
Paraffins 1570]8 B e Lo E e A 58 e e S22 lb2 R 82 44
n=22
GAMTEB-2C GRS O5 Byl LA 8 SpeEo e is e RS 80
40 K particles
SIMPLE-100 Q0 - A%86" 314516l 4681 2518 1355 747
100 iters

Could not have
asked for more

September, 1992

Dataflow architecture sul:)l:)orts
the execution model beauthcuuy.

2

PH Para”el Haske”

* Id said nothmg too new about tgl:)es
o Haskell had a SEXY New tgpe system and a
community of researchers
* 199%: Aclopt a Haskell Personalitg for1d
* Peyton Jones, Augustsson, Nikhil, Arvind
» Frontend bg Lennart Augustsson
o First back end: the Id compiler
* pH back end (1998)
S Alfjanciro Earo, RTS by J-W Maessen

10

Parallel Iteration

& (lses unfolclj sgnthesize (Para”el unfold)

+ Cansay associative, commutative:

sum xs = reduce (+) @ (someOrder xs)

« Produce a fold| (not {:oldr) where possible
foldr - someOrder = foldl
o The concat function 9ie|cls nestec Para”elism

reduce (+) 0@-concat = reduce (+) @-map (reduce (+) 0)

° Abelian oPerator merges [-structure egects

+ Monadic aPProach would imPose an order

1

On to von Neumann

* By micl~90s it was clear dataflow wouldn’t |<eel:>
pace with off-the-shelf processors.

XS Target stock SMP machines instead.

o Must tell the hardware which thread to run
> Suspensive Thread ~ super~bloc‘<

o Chain togcther depencﬂent threads
o Re-think data copging between frames

12

e T

° Evergthing is an l-structure cell

* Copg data From ca”er Frame to ca”ee and back

Tree of Global Heap of
Activation Shared Objects
Frames f:t
7 ~
g: h: [T
n N
active 11
threads\ ,& i | /]
\ \\\[
- A
asynchronous
loop and parallel

at all levels

15

PHThreacl Model

& |-structure proxy it Possiblg uncoml:)utecl

* No copging rec]uired; ca”~l:>3~re1cerence

Tree of Global Heap of
Activation Shared Objects
Frames 3
=
[T]
7 ~

:/ . |—|
A N R,

loop

A N\

Threacling In PH

° | ncorl:)orate control flow in suspensive threads
* SPawn a new threacl onlg when:
° There are multiple cel:)enclent blocks

o One of them actual Yy suspends

XS Coml:)iled code looks like familiar strict code
° E’xcel:)t there’s a lot of checking
e Anda scattering of resuml:)tion Points

+ Obvious how to exploit (eg} strictness analgsis

Schedulin g

*» Work stealinga la Cilk
« Follows usual Ca”/ return Pattem
*» Good teml:)oral Iocalitg In Practice
* Low overhead in common case

» Butwhat about I-structures?
* Read: add ourselves to a defer list
« Run the defer list on write

D ACICIS ChCCl(IN common case

° Wrecks temporal Iocalitg

16

PHThreacl Model

o L ook at all those levels of indirection!

Tree of Global Heap of
Activation Shared Objects
Frames 3

-

e

[T]
7 TS
g 2 3 —m

:/ |—|
A N R,

loop

A N\

_]7 -

Eager Thread Model

o Active threads arrangecl in a stack
i

« Indirections only for stu

C which suspencls

root empty Global Heap of
object Shared Objects

E' indirection from

g: h: I:_l_/old suspension
E ~—
active /Z_ T
thread T/
stacks
——{ [|

—thunk

18

Resource-boundedness

o Allowacallto suspencj for any reason
o Run Haskell code eager|9 with same semantics
> Accumulating parameters in constant spacel
but...
» Function call no longer returns a value
« Use an alternate continuation -/ walk stack
» Indirections add unexpectecl sgnchronization
* Even for stuff known to be comPutecl

Pl Retrg” semantics for case exl:)ressions

_]9__ e

Did it work?

Eager Haskell / GHT

4 T
'I —
=
35 =
3 |
25 .
'I —/ |
l L | | b L | b — — —
o5 - \ =
0 | | | | | | | | | | | | |
fk claos fheab oveen av-ho pala t-ho bime mull wave B gan who smol swm apna

* As long as programs weren’t very lazg

D 4 SU]CFCFCCl 1Crom lack OF man—-gears

20

Most critical lesson

Non-strictness carries a fundamental cost:
Must be reaclg to deal with un~computecl data
o Code must check unless it knows
o There must be a mechanism to suspencl
o There must be a mechanism to resume

o Allelseis deciding how these mechanisms work

All of the above aPPlies to exploi’cing Para”elism

as well!

21

Idiom mismatches

o Idiomatic Haskell uses laziness gratuitouslg:

Z P RE S r S xS
take n (iterate f x)

case xs of

XSS)l X< Or=ny
G AT o Y,
| otherwise = z
where y

y4

* We expectecl less code twea‘dng e Port to PH
* Yes, language does atfect how you think

VaA

C nexl:)ectecj cha”cnges

o Parallel GC

» Absolute necessitg (sags Amdahls Iaw)

XS Requires 2~-3 man years to do crediblg

o Readable version and fast version

o Code generator onlg took man months!
* Dynamic linking

* Plaged bac”y with weird control flow hacks
2 Shhcting language (Haske” 13914 =298 =)

=

Strictness analgsis

In the late 80’s, strictness analgsis was going to
allow us to Para”elize |829 functional programs
» Tells us which expressions we must compute
o Just run those in Para”el!
but...
Elaborate strictness didn’t work well
* Very goocl at ﬁncling local dependencies

o Tells us where to serialize our code!

24

Atomicitg CONCerns

* PH data representation:
» Numbers look like valid IEEE doubles

« Pointers look like NaNs (mask high bits)
* Write requires loadj test, Fence, CAS
o This runs faster on multi-cores!
& Eader Haskell memory rePresentation:
* Write rec]uires fence, tag upclate; no CAS
o Read check combines with case exPression

o Use HW transactions to combine checks

29

Good ideas unexplorecl

* Strong classical oPtimization for Haskell etc
* Strength reduction
» Conditional rewriting
* Partial Reclunclancg for arbitrarg exprs’?
* SPecialize code based on computedncss

° ComPiIe better code when non-strict

arguments are WHNF
* Explorc more strategics For resource-

bounding coml:)utation

26

Hope for architecture

o Architecture is once again in flux

° Sopcwarc 1Co”<5 seem to have real clout

o Hardware which would benefit everyone:
+ Transactional memory (can it scalc‘?)
« Hardware read/write barrier
¥ GC fast software TM, I-structures...
¢ Logor tral:)’? Under what circumstances?

o Getrid of Pipeline drains in sgnchronization

SRR

Onward to Fortress

» Parallel for IooPs, comPrehensions, tupling
* Everything looks like a reduction
* Some reduction operators involve effects
+ Commutativity, associativity, iclempotence

& (Generators: para lel unfold (must &@Corest)

o Track ordered ness, uniqueness
XS E‘quational manipulation in libraries it Possible
* Cross Proclucts, simple nesting

& Data cle]aendeﬂt nested generators’?

28

Rogue’s Ga”erg

Arvind

Rishigur S. Nikhil
Lennart Augustsson
Jan-Willem Maessen
Aléjanclro Caro
Jacob Schwartz
Mieszko Lis

Joe Stoy

ISME AL GALT P ACRA AL ESL

PROGRAMMING

IN pH

__ N ‘\]1‘\‘&\\\" -’.‘.:f{'""‘"--_;_i :

) \
\\\1"* I\i\\l \\‘ \i}‘\ ——“\\]- \, \ \
\\W"’ ﬂ\"‘ N

i\

\. ~S) N \

\ }3}3}’\' "N 'T,."L:;'
ST

q?&

_29..

Non~susl:>ensi\/e threads

> Groups of instructions can run together samcelg
* Theg share input dependencies
* Or contribute to the same outputs
* Group them into non-susl:)ensive threads

> Coml:)ile these for von Neumann architectures
o |-structure access breaks a thread
* Very ﬁne—-grainedj ~10instrs/thread

* Coml:)iler’s goal: biggest Possib!e threads.

50

