
pH: Lessons Learned
Jan-Willem Maessen

Sun Microsystems Laboratories
Arvind

MIT CSAIL

DPMCA, Charleson, SC, 15 Jan 2006

2

The pH Language
Id execution model + Haskell syntax and types
Implicitly parallel, non-strict, eager evaluation
flop :: Int -> [Int] -> [Int]
flop n xs = rs
 where (rs,ys) = for i <- [1..n] do
 x:next xs = xs
 next ys = x:ys
 finally (ys, xs)

Every subexpression may
run in parallel

Heap may hold partially-
computed data

3

This talk
Historical perspective

Roots in Id and dataflow execution model
Id becomes Id90, a modern FP language
Threads and von Neumann execution
Transition to pH and Eager Haskell

Lessons
Unexpected hurdles
Multi-core architectures

4

The birth of Id
Textual language describing dataflow graphs
(1977-78, Arvind@UC Irvine)

Dynamically typed (Influences Lisp, FP)
Idsys: Id compiler at MIT (1979 – 82; Pingali, Kathail)
Id World: dataflow graph, executed on a graph
interpreter GITA (1982-88)

Everything ran in parallel, parallelism profiles
Worked out dataflow function call
Invention of I- and M-structures to avoid copying
arrays during construction

 (Traub, Morais, Culler, Nikhil, Pingali...)

5

I- and M-structures

Storage + synchronization in one.

I-structure: write once.
Read: block until write occurs

M-structure: write many synchronization
Take: block until a value is written, then
remove it and mark the location empty
Capture non-determinism in system code
Build classic mark-based graph algorithms

6

Id Noveau / Id 90
Id becomes a modern Functional Language:

Hindley-Milner types
Array and list comprehensions
I-structures are de-emphasized in source

Better resource management
Compiler-inserted free operations

2x larger compiler code base (Nikhil, Hicks)
For a compiler which already worked well

7

Shifting focus to runtime
By the mid 80’s, key issues had been resolved

There was more than enough parallelism
Id compiler was starting to see heavy use (LANL)
For systems programming tasks, too!

Bounded loops
Limit actual parallelism, space consumption

Classical optimizations on dataflow graphs
Basically an SSA compiler

Suspensive threading...

8

Id/pH Thread Model
Non-Suspensive Thread ≈ basic block

Global Heap of
Shared Objects

Tree of
Activation
Frames

h:g:

f:

loop

active
threads

asynchronous
and parallel
at all levels

9

Great on Monsoon
 Boon Ang, Derek Chiou, Jamey Hicks

Matrix Multiply
500 x 500

Paraffins
n=22

GAMTEB-2C
40 K particles

SIMPLE-100
100 iters

1pe

1.00

1.00

1.00

1.00

1pe

1057

 322

 590

4681

2pe

1.99

1.99

1.95

1.86

2pe

 531

 162

 303

2518

4pe

3.90

3.92

3.81

3.45

4pe

 271

 82

 155

1355

8pe

7.74

7.25

7.35

6.27

8pe

137

 44

 80

747

speed up critical path
(millions of cycles)

September, 1992
Could not have
asked for more

Dataflow architecture supports
the execution model beautifully.

10

pH: parallel Haskell
Id said nothing too new about types
Haskell had a sexy new type system and a
community of researchers
1993: Adopt a Haskell personality for Id
Peyton Jones, Augustsson, Nikhil, Arvind

Front end by Lennart Augustsson
First back end: the Id compiler
pH back end (1998)

Alejandro Caro, RTS by J-W Maessen

11

Parallel Iteration

Uses unfold, synthesize (parallel unfold)
Can say associative, commutative:

sum xs = reduce (+) 0 (someOrder xs)
Produce a foldl (not foldr) where possible

foldr ∘ someOrder = foldl
The concat function yields nested parallelism

reduce (+) 0∘concat = reduce (+) 0∘map (reduce (+) 0)
Abelian operator merges I-structure effects

Monadic approach would impose an order

12

On to von Neumann
By mid-90s it was clear dataflow wouldn’t keep
pace with off-the-shelf processors.

Target stock SMP machines instead.

Must tell the hardware which thread to run
Suspensive Thread ≈ super-block

Chain together dependent threads
Re-think data copying between frames

13

Id Thread Model
Everything is an I-structure cell
Copy data from caller frame to callee and back

Global Heap of
Shared Objects

Tree of
Activation
Frames

h:g:

f:

loop

active
threads

asynchronous
and parallel
at all levels

14

pH Thread Model
I-structure proxy if possibly uncomputed
No copying required; call-by-reference

Global Heap of
Shared Objects

Tree of
Activation
Frames

h:g:

f:

loop

active
threads

15

Threading in pH
Incorporate control flow in suspensive threads
Spawn a new thread only when:

There are multiple dependent blocks
One of them actually suspends

Compiled code looks like familiar strict code
Except there’s a lot of checking
And a scattering of resumption points

Obvious how to exploit (eg) strictness analysis

16

Scheduling
Work stealing a la Cilk

Follows usual call/return pattern
Good temporal locality in practice
Low overhead in common case

But what about I-structures?
Read: add ourselves to a defer list
Run the defer list on write

Adds check in common case
Wrecks temporal locality

17

pH Thread Model
Look at all those levels of indirection!

Global Heap of
Shared Objects

Tree of
Activation
Frames

h:g:

f:

loop

active
threads

18

Eager Thread Model
Active threads arranged in a stack
Indirections only for stuff which suspends

Global Heap of
Shared Objects

h:g:

f:

active
thread
stacks

root empty
object

indirection from
old suspension

thunk

19

Resource-boundedness
Allow a call to suspend for any reason
Run Haskell code eagerly with same semantics
Accumulating parameters in constant space!

 but...
Function call no longer returns a value

Use an alternate continuation / walk stack
Indirections add unexpected synchronization

Even for stuff known to be computed
“Retry” semantics for case expressions

20

Did it work?

As long as programs weren’t very lazy
Suffered from lack of man-years

21

Most critical lesson
Non-strictness carries a fundamental cost:
Must be ready to deal with un-computed data

Code must check unless it knows
There must be a mechanism to suspend
There must be a mechanism to resume
All else is deciding how these mechanisms work

All of the above applies to exploiting parallelism
as well!

22

Idiom mismatches
Idiomatic Haskell uses laziness gratuitously:

zip [1..] xs
take n (iterate f x)

case xs of
 (x:xs) | x < 0 = f y
 | x > 0 = g y
 | otherwise = z
 where y = ...
 z = ...

We expected less code tweaking to port to pH
Yes, language does affect how you think

23

Unexpected challenges
Parallel GC

Absolute necessity (says Amdahl’s law)
Requires 2-3 man years to do credibly
Readable version and fast version
Code generator only took man months!

Dynamic linking
Played badly with weird control flow hacks

Shifting language (Haskell 1.3 → 1.4 → 98 →...)

24

Strictness analysis
In the late 80’s, strictness analysis was going to
allow us to parallelize lazy functional programs

Tells us which expressions we must compute
Just run those in parallel!

 but...
Elaborate strictness didn’t work well

Very good at finding local dependencies
Tells us where to serialize our code!

25

Atomicity concerns
pH data representation:

Numbers look like valid IEEE doubles
Pointers look like NaNs (mask high bits)
Write requires load, test, Fence, CAS
This runs faster on multi-cores!

Eager Haskell memory representation:
Write requires fence, tag update; no CAS
Read check combines with case expression

Use HW transactions to combine checks

26

Good ideas unexplored
Strong classical optimization for Haskell etc

Strength reduction
Conditional rewriting
Partial Redundancy for arbitrary exprs?

Specialize code based on computedness
Compile better code when non-strict
arguments are WHNF

Explore more strategies for resource-
bounding computation

27

Hope for architecture
Architecture is once again in flux
Software folks seem to have real clout

Hardware which would benefit everyone:
Transactional memory (can it scale?)
Hardware read/write barrier

GC, fast software TM, I-structures...
Log or trap? Under what circumstances?

Get rid of pipeline drains in synchronization

28

Onward to Fortress
Parallel for loops, comprehensions, tupling

Everything looks like a reduction
Some reduction operators involve effects
Commutativity, associativity, idempotence

Generators: parallel unfold (must deforest)
Track orderedness, uniqueness

Equational manipulation in libraries if possible
Cross products, simple nesting
Data dependent nested generators?

29

Rogue’s Gallery

Arvind
Rishiyur S. Nikhil
Lennart Augustsson
Jan-Willem Maessen
Alejandro Caro
Jacob Schwartz
Mieszko Lis
Joe Stoy

30

Non-suspensive threads
Groups of instructions can run together safely

They share input dependencies
Or contribute to the same outputs
Group them into non-suspensive threads

Compile these for von Neumann architectures
I-structure access breaks a thread
Very fine-grained, ~10instrs/thread

Compiler’s goal: biggest possible threads.

